TorsinA hypofunction causes abnormal twisting movements and sensorimotor circuit neurodegeneration.

نویسندگان

  • Chun-Chi Liang
  • Lauren M Tanabe
  • Stephanie Jou
  • Frank Chi
  • William T Dauer
چکیده

Lack of a preclinical model of primary dystonia that exhibits dystonic-like twisting movements has stymied identification of the cellular and molecular underpinnings of the disease. The classical familial form of primary dystonia is caused by the DYT1 (ΔE) mutation in TOR1A, which encodes torsinA, AAA⁺ ATPase resident in the lumen of the endoplasmic reticular/nuclear envelope. Here, we found that conditional deletion of Tor1a in the CNS (nestin-Cre Tor1a(flox/-)) or isolated CNS expression of DYT1 mutant torsinA (nestin-Cre Tor1a(flox/ΔE)) causes striking abnormal twisting movements. These animals developed perinuclear accumulation of ubiquitin and the E3 ubiquitin ligase HRD1 in discrete sensorimotor regions, followed by neurodegeneration that was substantially milder in nestin-Cre Tor1a(flox/ΔE) compared with nestin-Cre Tor1a(flox/-) animals. Similar to the neurodevelopmental onset of DYT1 dystonia in humans, the behavioral and histopathological abnormalities emerged and became fixed during CNS maturation in the murine models. Our results establish a genetic model of primary dystonia that is overtly symptomatic, and link torsinA hypofunction to neurodegeneration and abnormal twisting movements. These findings provide a cellular and molecular framework for how impaired torsinA function selectively disrupts neural circuits and raise the possibility that discrete foci of neurodegeneration may contribute to the pathogenesis of DYT1 dystonia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forebrain deletion of the dystonia protein torsinA causes dystonic-like movements and loss of striatal cholinergic neurons

Striatal dysfunction plays an important role in dystonia, but the striatal cell types that contribute to abnormal movements are poorly defined. We demonstrate that conditional deletion of the DYT1 dystonia protein torsinA in embryonic progenitors of forebrain cholinergic and GABAergic neurons causes dystonic-like twisting movements that emerge during juvenile CNS maturation. The onset of these ...

متن کامل

TorsinA, microtubules and cell polarity.

Early-onset primary dystonia is an inherited disorder characterized by involuntary twisting, repetitive movements and abnormal postures. It has recently been demonstrated that the DYT1 gene is the most relevant gene associated with primary generalized dystonia. The DYT1 gene product is a 332-aminoacid long protein, termed TorsinA, whose function is still not clear. Based on the results obtained...

متن کامل

Mislocalization to the nuclear envelope: an effect of the dystonia-causing torsinA mutation.

Primary dystonia is a disease characterized by involuntary twisting movements caused by CNS dysfunction without underlying histopathology. DYT1 dystonia is a form of primary dystonia caused by an in-frame GAG deletion (DeltaE302/3) in the TOR1A gene that encodes the endoplasmic reticulum luminal protein torsinA. We show that torsinA is also present in the nuclear envelope (NE), where it appears...

متن کامل

Cerebellothalamocortical pathway abnormalities in torsinA DYT1 knock-in mice.

The factors that determine symptom penetrance in inherited disease are poorly understood. Increasingly, magnetic resonance diffusion tensor imaging (DTI) and PET are used to separate alterations in brain structure and function that are linked to disease symptomatology from those linked to gene carrier status. One example is DYT1 dystonia, a dominantly inherited movement disorder characterized b...

متن کامل

Current Gaps in the Understanding of the Subcellular Distribution of Exogenous and Endogenous Protein TorsinA

BACKGROUND An in-frame deletion leading to the loss of a single glutamic acid residue in the protein torsinA (ΔE-torsinA) results in an inherited movement disorder, DYT1 dystonia. This autosomal dominant disease affects the function of the brain without causing neurodegeneration, by a mechanism that remains unknown. METHODS We evaluated the literature regarding the subcellular localization of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 124 7  شماره 

صفحات  -

تاریخ انتشار 2014